111024, Moscow, Shosse Entusiastov, 20B, POB 140

Tel.: +7 (495) 361-76-73, 361-19-90, 707-12-94
E-mail: sales@interunis-it.ru

© 2024 Интерюнис-ИТ. All rights reserved.
Site development: АРТ Информэкспресс

News

NEWS FROM THE WORLD OF AE AND LIFE OF OUR COMPANY
Our portfolio in 2020

List of publications in 2020, in which our clients describe examples of the use of our company's products:

Medvedev K. A. (STC EgidA LLC, Moscow). Results of the study of acoustic-emission parameters of fiberglass pipelines for the development of the inspection methodology. Improvement of reliability of main gas pipelines subject to stress corrosion cracking : V International Scientific and Technical Seminar, Москва, December 16–18, 2020. Moscow. Gazprom, 2020. P. 47. eLibrary ID: 44589337 (full text)

Abstract During 2019 STC EgidA LLC and INTERUNIS-IT LLC with the participation of the NCO Association Rostechexpertiza conducted a number of tests in the sites of Tatneft-Presskomposite LLC for development of a method of AE testing of in-service fiberglass pipelines. The following results were obtained based on the results of the tests. The acoustic parameters of fiberglass pipelines were determined: the attenuation coefficient is 2.96 dB/m, the velocity of AE signals is 1304 m/s and the recommended value of the amplitude discrimination threshold is 42 dB. 60-80 % of cases of leakage of fiberglass pipelines are preceded by a strong excess of AE activity level 100 imp./s. In different experiments the duration of such excess ranged from 0 to 300 s depending on the loading rate but also on how close the holding pressure selected in increments of 25 % approached the failure pressure. Amplitudes exceeding 60–80 dB correspond to the failure of a single fiber with a diameter of 20 microns. The most informative parameter for assessment of the technical condition of fiberglass pipeline is the AE activity. Therefore, it is recommended to carry out loading without holding. Continuous AE should be considered a signature of a hazard class IV source. If the AE activity exceeds the level of 100 imp/s for 3–5 seconds, it should be considered as a signature of the presence of a class III source and the linear increase in AE activity under a load with activity values ranging from 10 to 100 imp/s should be considered as a source of hazard class II. The presence of signals with an amplitude higher than 60 dB should be considered a signature of the presence of a hazard class I source. The above results are provided in the author's presentation.

 

Belozerov V.V., Golubov A.I., Kalchenko I.E., Nguyen T.A., Topolsky N.G. (Don State Technical University, Rostov-on-Don; Academy of the State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Disaster Management, Moscow; Fire Safety Institute, Hanoi, Vietnam). Nanotechnologies for testing and diagnostics of materials, constructions and elements of engineering systems of buildings from them with fire retardant coatings. Part 1. Nanotechnologies in Construction. 2020, Vol. 12, no. 3, pp. 174–184. DOI: 10.15828/2075-8545-2020-12-3-174-184. http://nanobuild.ru/en_EN/journal/Nanobuild-3-2020/174-184.pdf (full text). eLibrary ID: 43002702 (full text)

Abstract Introduction. The aim of the study was to optimize the quality control of fire retardant coatings (FRC) during their production and use. The results of a comparative analysis of the consequences of fires and their causes with the parameter of fire resistance of objects indicate that the number of fires and damage from them in buildings of the first degree of fire resistance is almost an order of magnitude smaller than in buildings of the second degree of fire resistance. Consequently, increasing the fire resistance of building materials and structures is the way to radically reduce fires and losses from them. Methods and materials. Based on a system analysis of existing fire protection technologies for building materials made of wood, metals, rubber and polymers, nanotechnologies were developed to determine the stability of samples with an FRC on the baro-electro-thermo-acoustic (BETA) analyzer and create their «images» for further diagnosis of their aging at the constructions and operation facility. The novelty of the study is protected by patents of the Russian Federation. Results and discussion. The obtained results consist in the refinement of computational algorithms for the FRC in the BETA analyzer, as well as in the development of a portable automated complex, which allows to determine the stage of «aging» of the FRC on these materials, and, consequently, their durability and update time. This conclusion is based, firstly, on the results of the development of a thermo-electro-dilatometer crucible for controlling liquid and viscous materials by the authors of the «float design», which will make it possible to control the FRC characteristics during their production, and secondly, to carry out express control after filling them in containers (polymer, metal, glass) without opening it and thirdly, due to the recognition of these «images» using thermo-electro-measurements of the FRC using special probes connected to a portable automated system. Conclusion. The results obtained make it possible to «arm» with portable automated systems not only construction and fire control authorities, but also manufacturers of emergency protection products. This will allow, according to the authors, to fundamentally solve the problems of quality and durability of FRC, but the main thing is to guarantee the stability of the protected materials and structures from them.

 

Builo S.I., Vereskun V.D., Kolesnikov V.I., Manturov D.S., Popov O.N. (Rostov State Transport University, Rostov-on-Don; Vorovich Institute for Mathematics, Mechanics, and Computer Science, Southern Federal University, Rostov-on-Don). Determining Friction Coefficient at Run-In Stage and Diagnosing the Point of Transition to Steady-State Phase Based on Acoustic Emission Signals. Russian Journal of Nondestructive Testing. 2020. Vol. 56. No 1. P. 41-48. DOI 10.1134/S1061830920010039. eLibrary ID: 43269502

Abstract We study the joint dynamics of changes in the parameters of acoustic emission (AE) and in the friction coefficient during TRB friction machine testing of flat steel 12Kh2N4ASh specimens, including those with Ti + Al + N ion-plasma vacuum sputtering. The results of studying the shape of the curve of the reconstructed values of AE-event stream intensity in different parts of the experimental curves of the dependence of friction coefficient on test time are presented. A significant correlation was discovered between the friction coefficient and the reconstructed AE-event stream intensity. Methods are proposed for evaluating the friction coefficient and the time of the run-in stage end based on the reconstructed AE-event stream.

 

Eremenko V.A., Vysotin N.G., Leizer V.I., Kosyreva M.A., Galchenko Y.P. (College of Mining, National University of Science and Technology—MISIS, Moscow; Academician Melnikov Research Institute for Comprehensive Exploitation of Mineral Resources—IPKON, Russian Academy of Sciences, Moscow). Strength, deformation and acoustic characteristics of physical models of frame and honeycomb underground structures. Journal of Mining Science. 2020. Vol. 56. No 6. P. 962-971. DOI 10.1134/S1062739120060083. eLibrary ID: 46789420

Abstract The article describes preparation and implementation of experimental research into strength, deformation and acoustic characteristics of physical models of frame and honeycomb underground structures designed at the Research Center for Applied Geomechanics and Convergent Technologies in Mining at NUST MISIS College of Mining. An integrated test bench for physical and optical modeling of geophysical processes in the secondary stress fields, an installation and a special test bench for 3D physical modeling of any complexity are manufactured. The standard variants of physical modeling of the advanced frame and honeycomb underground structures are developed. The authors present the test data on strength, deformation and acoustic characteristics obtained on a model of a frame structure variant. The tests show that honeycomb underground structures exhibit higher stability when they contain more circular openings of smaller diameter.

 

Kolesnikov V.I., Vereskun V.D., Manturov D.S., Popov O.N., Novikov E.S., Kudryakov O.V. (Rostov State University of Railway Engineering, Rostov-on-Don; Don State Technical University, Rostov-on-Don). Technologies for Improving the Wear Resistance of Heavily Loaded Tribosystems and Their Monitoring. Journal of Friction and Wear. 2020. Vol. 41. No 2. P. 169-173. – DOI 10.3103/S1068366620020051. eLibrary ID: 43289650

Abstract Despite interest, no one to the best of our knowledge has compared the physical, mechanical, and tribological properties of nitride-based TiAlN and CrAlSiN coatings, nor diamond-like ion-plasma coatings (DLC). In order to identify the physical and mechanical properties, including the elastic modulus E and hardness H, we used nanoindentation methods, while experimental tribological testing of coatings was carried out on a TRB tribometer (Anton Paar TriTec SA). These tests revealed that during operation in the contact area of splined joints, a multilayer coating has better mechanical properties than a monolayer one under the testing conditions at specific loads comparable to operating loads. At the same time, a DLC coating features a much lower friction coefficient than do nitride systems. In addition, the paper presents the results of keeping friction units under observation by the acoustic emission (AE) method, which makes it possible to determine the running-in time for both coated and uncoated friction units.

 

Y. G. Matvienko, I. E. Vasil’ev, M. A. Bubnov, D. V. Chernov (Mechanical Engineering Research Institute, Russian Academy of Sciences, Moscow). Influence of Dimensions and Shape of Process Cutouts on the Accuracy of Locating Acoustic Emission Sources. Russian Journal of Nondestructive Testing. 2020. Vol. 56. No 2. P. 101-109. DOI 10.1134/S1061830920020060. eLibrary ID: 43285326

Abstract Experiments have been carried out to study the effect of the size and shape of cutouts in steel plates on the difference in the arrival time of acoustic emission pulses at receiving transducers. The data obtained were compared with the results of a numerical simulation of the propagation of elastic waves in plates with various strip and circular cutouts. The research results indicate that the shape of the cutout has a much lesser effect on the time of recording pulses by the transducers of an antenna array than the size of the cutout and the location of the receiving transducer relative to the shading zone—the edge of the cut-out. Based on the results of studies in a 40-mm–thick steel plate with a central 100 mm hole, the accuracy of locating an acoustic emission source near the edge of the hole was estimated. Studies have shown that, in this case, to reduce the measurement error to less than 10% of the antenna-array base size, the location group must include at least four transducers. Numerical simulation of the propagation of acoustic emission pulses in plates with strip and circular cutouts made it possible to significantly reduce the volume of experimental studies, while increasing their information content.

 

Matvienko Y.G., Vasil’ev I.E., Chernov D.V., Ivanov V.I., Mishchenko I.V. (Mechanical Engineering Research Institute, Russian Academy of Sciences, Moscow; Research Institute of Introscopy MNPO Spektr, Moscow; National Research University Moscow Power Engineering Institute, Moscow). Error Reduction in Determining the Wave-Packet Speed in Composite Materials. Instruments and Experimental Techniques. 2020. Vol. 63. No 1. P. 106-111. DOI 10.1134/S0020441220010212. eLibrary ID: 43260269

Abstract The causes of fluctuations of the acoustic-impulse propagation velocity in a composite plate upon a change in the distance between the radiation source and a receiving transducer from 30 to 300 mm were studied. Methods for minimizing these fluctuations by reducing the influence of high-frequency wave-packet modes at the time of recording impulses by acoustic-emission transducers were developed. The use of the latter in determining the propagation velocity of a wave packet contributed to a decrease in fluctuations and stabilization of measurements in the diagnostic zones of the composite plate. These methods made it possible to reduce the velocity fluctuations by more than 30% compared to the standard calculation method.

 

Makhutov N.A., Sokolova A.G., Vasil'ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A., Ivanov V.I. (Mechanical Engineering Research Institute, Russian Academy of Sciences, Moscow; ZAO RII MSIA “Spectrum”, Moscow). Monitoring Composite Fiber Failure Using Acoustic Emission System, Vibration Analyzer, and High-Speed Video Recording. Russian Journal of Nondestructive Testing. 2020. Vol. 56. No 12. P. 960-970. DOI 10.1134/S1061830920120049. eLibrary ID: 46747829

Abstract We consider the nature of the phenomenon of acoustic emission (AE) occurring in the process of deformation and destruction of solid bodies. A theoretical analysis of the processes of transformation and dissipation of energy during the destruction of structural bonds of an idealized model of a solid has been carried out. Using A-line32D and PCI-2 AE systems, Onyx vibration analyzer, and Videosprint high-speed camera, as well as numerical simulation in the LS-DYNA software environment, we study wave processes occurring during deformation and rupture of reinforcing fibers of composite materials. The obtained experimental and calculation data indicate that the main energy is emitted within the period of the aftereffect of fiber rupture in the range of sound frequencies less than 2 kHz. In this case, the energy of the peak values recorded in the ultrasonic frequency range does not exceed several percent of the maximum level at the carrier frequency in the audio range.

 

M. S. Nikiforova, E. N. Kostyukov (Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov). Influence of Filler Crystal Sizes on Acoustic Emission Parameters during Tensile Testing of Parts Made of Plasticized HMX. Russian Journal of Nondestructive Testing. 2020. Vol. 56. No 9. P. 699-705. DOI 10.1134/S1061830920090089. eLibrary ID: 45131559

Abstract We study changes in the parameters of acoustic emission that develops during quasistatic deformation of parts made of plasticized coarse- and fine-grained HMX under tension. Characteristic changes in acoustic emission dependences and absolute values of acoustic emission parameters have been determined during transition from a coarse- to a fine-grained material structure. In accordance with the results of the experiments, we analyze possible scenarios of the development of the process of damage accumulation and failure of parts with a change in the size of crystals that form their internal structure. As a confirmation of the corresponding changes in the parameters of acoustic emission, we have investigated the structure of the surface of parts in the zones of their failure using an electron microscope. Under tension, the failure of parts based on finely dispersed HMX occurs instantly, when a critical level of damage is reached in any part of the volume and conditions are created for microcracks to combine into macrocracks. For parts containing coarse HMX, failure typically occurs according to the principle of a “weak” link, ie., localization of microcracks in one or several zones over the volume of the deformed material as early as at the initial stage of loading. These zones become the spots where cracks merge and the focus of their further development up to failure at a new scale level. The results obtained expand the existing understanding of the process of damage accumulation and failure of energy-yielding materials and can be used in the development and improvement of relevant mathematical models.

 

Novikov E.A., Shkuratnik V.L., Zaitsev M.G., Klementyev E.A., Blokhin D.I. (National University of Science and Technology “MISiS,”, Moscow; N.V. Melnikov Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences, Moscow). Acoustic Emission of Frozen Soils under Quasi-Static Mechanical and Cyclic Thermal Loading. Soil Mechanics and Foundation Engineering. 2020. Vol. 57. No 2. P. 97-104. DOI 10.1007/s11204-020-09643-6. eLibrary ID: 43306247

Abstract The effects of acoustic emission (AE) in soils during freezing and thawing under cyclic thermal and quasi-static mechanical loading have been studied. The composition and characteristics of the developed instrumentation set are presented. The informative AE parameters and primary data processing approaches were justified. The acoustic emission patterns of soil material behavior under the variable thermobaric conditions were obtained. The comparative tests were performed using static probing and ultrasonic scanning.

 

M. R. Tyutin, V. G. Budueva, G. G. Alekseev (Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow; Fourth Central Research Institute of the Ministry of Defense, Korolev). Effect of the Technological State of the Material of the Structural Elements of Fuel Tanks Made of Amg6 Alloy on the Acoustic Emission Parameters. Russian Metallurgy (Metally). 2020. Vol. 2020. No 10. P. 1213-1217. DOI 10.1134/S0036029520100304. eLibrary ID: 45184012

Abstract The development of acoustic emission during tensile tests of specimens taken from the shells and bottoms of large fuel tanks made of an Amg6 alloy after long-term (for about 30 years) operation is investigated. Different technological states of the structural elements of a tank (cold working of the shell and annealing of the bottom) are shown to affect the acoustic parameters. The activity of acoustic emission signals are found to decrease during the destruction of the cold-worked material and in the specimens oriented across the rolling direction.

 

V. L. Shkuratnik, O. S. Kravchenko, Y. L. Filimonov (National University of Science and Technology “MISiS”, Moscow; Joint Stock Company “Gazprom Geotekhnologii”, Moscow). Acoustic Emission of Rock Salt at Different Uniaxial Strain Rates and Under Temperature. Journal of Applied Mechanics and Technical Physics. 2020. Vol. 61. No 3. P. 479-485. DOI 10.1134/S0021894420030207. eLibrary ID: 45333994

Abstract Acoustic emission activity and longitudinal and volumetric deformations in rock salt samples subjected to uniaxial mechanical loading with a constant strain rate and thermal stress are measured. The features of acoustic emission during deformation under various thermobaric experimental conditions are analyzed It is shown that, in contrast to the deformation parameters, the change in the activity of acoustic emission at the boundaries of the indicated stages is nonmonotonic in nature, as well as features that make it possible to accurately determine each stage and estimate the elastic and strength properties of the rock salt

 

V. L. Shkuratnik, O. S. Kravchenko, Y. L. Filimonov (National University of Science and Technology—MUSIS, Moscow; Gazprom geotekhnologii, Moscow). Stress Memory in Acoustic Emission of Rock Salt Samples in Cyclic Loading under Variable Temperature Effects. Journal of Mining Science. 2020. Vol. 56. No 2. P. 209-215. DOI 10.1134/S1062739120026662. eLibrary ID: 45350831

Abstract The behavior of acoustic emission in uniaxial cyclic loading of rock salt samples from the Kaliningrad deposit is determined. The samples were tested under varied temperatures and ratios of maximal stresses in sequential loading cycles. The experimental curves of acoustic emission activity and maximal stress and temperature of the previous cycle are obtained. Stress memory in acoustic emission manifests itself equally stably under constant higher and lower temperatures. Memory of the maximal stress of the previous cycle persists under higher temperature in the next cycle and vanishes under lower temperature in the next cycle. In case of the same maximal stresses and constant or higher temperatures in the successive cycles, the stress memory effect is vague: the stress estimated on this base is lower than the maximal stress of the previous cycle.